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Abstract

This research addresses the implementation of an electronic element,
which emulates the biological synaptic interconnection, in an artificial
electronic neural system. The basic interconnection, or the weight, consists
of an electrically reprogrammable, nonvolatile, analog conductance which
programs at 5V levels. In addition, the fabrication technology for this
synaptic interconnection is compatible with existing CMOS VLSI processes.
The attractive features of this synaptic weight will be discussed in this
report. Furthermore, this report examines the material needs, the.device
structures, the use of the synaptic weights in a two-tap weight linear
adaptive neural-like circuit and the issue of integrating both the synaptic
weight elements and the peripheral circuit onto a single silicon wafer.

1. Introduction

The current surge of enthusiasm for neural network aims to construct systems that can learn
or modify their behavior according to the environment. There are many similarities which exist
between this new class of machine and human beings. One of these similarities is the massive
parallelism in processing information. Parallel processing! concepts are in stark contrast to the

operations of modern digital computers that perform large numbers of sequential operations very

rapidly and accurately.

Researchers believe the synaptic junctions in a neural system are the local memory sites
and provide the physiological basis for the distributed parallel systems. 3 These synapses are not
only modifiable but also serve the functions of storing and transmitting information from neuron to
neuron. To reduce the complex modelling required for the synaptic interconnection, the
representation of the synapse has been simplified to a single ideal junction between the output of
neurons (axons) and the inputs to neurons (dendrites). Synaptic modification requires information
from the input and the output of the neuron in order to perform comblex recognition. Therefore, the
nature of the synaptic junction and the principle or algorithm which controls local organization at
the neuron level become two central issues pertaining to neural networks research.

The recent interest in neural networks® 5 is a direct consequence of the programmability
which is an essential feature of learning machines, associative memories, and adaptive signal
processors. Programmability requires a modification of the synaptic strength in the language of
neurobiology. If we seek an efficient hardware implementation of electronic neural systems, then
the synapses - as well as the network itself- should be analog. Several attempts have been made to

realize programmable synapses, either digitally® or with temporary storage on the input capacitance




of a MOS Transistor” 8 to alter the latter's analog conductance. The former approach stores the
weight information in digital registers and thus suffers from excessive chip area and power
consumption. On the other hand, although the MOS Transistor provides an analog synaptic
strength (weight) in a small chip area, the weight is temporary and requires periodic refresh similar
to a DRAM. Thus, this dynamic refresh approach lacks the nonvolatility and storage properties of
an EEPROM cell. Researchers at Intel have reported an electrically trainable artificial neural
network with floating gate device as the synaptic element.? Although the floating gate device has
the property of nonvolatility, its high programming voltage requirement prevents it from being
technologically compatible with scaled CMOS process.

In this research report we describe a new approach to obtain an electrically reprogrammable or
modifiable synaptic weight to be used as a basic functional element in electronic neural systems.

The salient features of this network element are the following:

s Low programming voltages(5-10V) which are compatible with peripheral
CMOS VLSI technology in contrast with Floating Gate approaches.

¢ Low power dissipation (< 1uW).
¢ Dynamic Range of 1000:1 (60 dB).

¢ Nonvolatile features which mimic biological synapses with respect to memory
loss (e.g. 20% of the information available after 10 years) and reinforced
learning (e.g. successive interrogation enhances memory retention).

¢ Small synaptic area on a VLSI chip (e.g. less then 20pm?2 for 1.25 pm feature
sizes).

e Extensive erase/write programming cycles are possible with this synapse (>
108 cycles) in contrast with Floating Gate approaches.

o Inherent radiation damage resistance beyond a total dosage of 1IMRad (Co%%)

and 10° Rad/sec transient which is not possible with Floating Gate technology.

Thus, if radiation damage resistance of neural networks is an important issue,

then the SONOS devices have demonstrated success in this area.

The basic nonvolatile device structure, which we describe in this report was first introduced as
a digital nonvolatile memory cell in the summer of 1987 at the IEEE Device Research Conference!?
by researchers at Lehigh University. We have had a continual involvement over a 20 year period
with nonvolatile memories, beginning in the late 60’s where we had programming voltages of 25V, to
the late 80’s with our novel 5V SONOS device structures. During this time period we introduced the

use of CCD’s and nonvolatile memories!l: 1213 in nonvolatile charge addressed memories

(NOVCAM). These ideas have been employed recently for neural network circuits by researchers at




Lincoln Laboratories.14 Our recent work recognizes the inherent analog conductance aspect of the
nonvolatile SONOS memory device which makes it a perfect candidate for the modifiable synapse in

an electronic neural system.

In addition to the realization of an electronic element to simulate the synaptic interconnections
of a neural network, we must have a method or algorithm to change or reprogram these
interconnections and, thus, alter the connectivity of the neural network. We have had experience
with a particular form of an algorithm, namely, the Widrow-Hoff Least Mean Square (LMS)!5 error
algorithm or in neural network terminology - the so-called ’delta rule’. In the late 70’s we researched
a CCD Adaptive Analog Signal Processorl®: 17 which realizes the 'delta rule’ with CCD analog delay
lines and electrically reprogrammable MNOS analog conductance weights. These weights were
nonvolatile memory transistors whose analog conductance was programmed with voltages ranging
from 15-25V. Our recent work on 'scaling’ these programmable analog conductances has resulted in
a new device structure, called the SONOS nonvolatile memory transistor, which can be
reprogrammed with voltages ranging from 5-10V. This work has recently been described at the 1991
11th IEEE Nonvolatile Semiconductor Memory Workshop.!®8 These voltage levels are compatible
with ’scaled’ CMOS VLSI technology which has 12-15V breakdown voltages for 1.25um feature sizes.
In this report we describe our recent work on the electrically reprogrammable (modifiable) SONOS
nonvolatile synapse and a simple electronic neuron with 2 synaptic weights. We discuss this two-tap
weight linear adaptive neuron in terms of the technology, the electrical characteristics of the

synapses, and their performance in this simple test vehicle - a 'delta rule’ adaptive signal processor.

2. Technology and Characterization of the SONOS Synaptic Weight

The programmable synapse is the result of an ongoing effort at Lehigh University to ’scale’ the
programming voltages required to alter the analog conductance of a nonvolatile memory transistor
with a multi-layer (oxide-nitride-oxide) gate insulator as shown in Fig. 1. Recent efforts in scaling
this device have resulted in a SONOS (Silicon/Blocking Oxide/Nitride/Tunneling Oxide/Silicon)
nonvolatile memory transistor which is electrically reprogrammable at CMOS voltage levels.
Typically, the tunneling oxide is 15-25A , the storage nitride is 50-100A and the blocking oxide is
35-50A . Fig.2 shows the Transmission Electron Microscope (TEM) photograph of the cross secti'onal
view of the SONOS transistor. This device is similar to a SNOS transistor except for the addition of

the blocking oxide which is used to inhibit injection of carriers from the polysilicon gate electrode




and also to improve the memory retention by prohibiting the transfer of stored charge from the
nitride to the gate electrode. As a result, the blocking oxide permits the entire dielectric sandwich to

be scaled to dimensions where programming voltages ranging from 5-10 V are possible.

When the SONOS device is subjected to a positive (or negative) programming pulse, electrons
(or holes) are injected into the silicon nitride layer by means of tunneling across the thin tunnel
oxide. The injected charges are trapped by the silicon nitride and, thus, shift the i:hreshold voltage
positively (or negatively). The threshold voltage of a SONOS transistor can be written as
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where ¢ is the bulk potential, ¢5g is the gate to semiconductor workfunction, Q; is the fixed charge
at the tunneling oxide-silicon interface, £,, and &y are the dielectric permittivities of the oxide and
nitride, € is the dielectric permittivity of the bulk silicon, x , is the tunnel oxide thickness, x , is the
blocking oxide thickness, x| is the nitride thickness, % is the charge centroid in the insulator, and Qy;
is the charge stored in the nitride, Ny is the bulk doping density, and

€
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We assume the tunnel oxide and blocking oxide have the same dielectric permittivity; even though, it
is known that the tunnel oxide is silicon rich and the blocking oxide is an oxynitride. The values of
the charge centroid % and the variable charge stored in the nitride Qy will change as the device is
written or erased. The analog conductance of the SONOS synaptic weight is given as

oW
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where H.4 is the effective carrier mobility, Vg is the read voltage, and Vipy is the electrically
modifiable threshold voltage given in equation (1). Therefore, there are two ways which the analog
channel conductance can be altered: (1) change the value of V55 or (2) change the value of Vi by

altering the stored charge, Qy;, in the nitride. In our study, the latter approach is chosen.

The SONOS transistors have been characterized for their memory properties with the test
station described by Roy et. al.19. This test station allows one to take both erase/write and retention




measurements. To investigate the memory loss/retention properties of the synaptic weight element,
retention measurements are taken. The retention characteristics are obtained by applying positive
(negative) five volts to the gate for 10 seconds to place the device in the write (erase) state and then

measuring the turn-on voltage after a varying delay time. The turn-on voltage is related to the
threshold voltage by

T
Vo= Vrg+ \IT:% @)

with Iyg as the forced drain to source current during measurement and
— W.
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where W is the width of the transistor, L is the length of the transistor, and [ 4 is the effective
mobility. The effective mobility is the bulk mobility reduced by Coulombic and surface scattering of
carriers in the inversion layer. This mobility is influenced by the gate and substrate voltages.2® For
a SONOS transistor, retention measurements indicate that greater than 20 percent of the memory
window remains after a projected 10 year delay time as shown in Fig. 3. The erase/write
measurements indicate the programming speed of the synaptic weight element. To measure the
writing (erasing) speed, negative (positive) five volts are applied to the gate for 10 seconds to place
the device in the erase (write) state. Then, positive (negative) five volts are applied to the gate with
varying pulse widths and the turn-on voltage is measured after each pulse width. The erase/write
characteristics of the SONOS memory transistor are shown in Fig. 4. A wide dynamic range is one
of the essential properties for the synaptic weight element, and Fig. 5 illustrates a 60 dB in dynamic
range after +5V programming for the SONOS synaptic weight. In addition, a recent study in
reliability has demonstrated the inherent resistance of the SONOS memory transistor to radiation
damage (8Vygy = 0.1V, with Vgg = + 5V at 1MRad Co® radiation).2!

3. Single-level Linear Adaptive Neuron

We have incorporated the SONOS synaptic weights into a single-level linear neuron-like
circuit using a Widrow-HofPs delta learning rule.}5 The circuit is built with a hybrid breadboard of
CMOS components for the control logic and the algorithm implementation and the SONOS
nonvolatile memory transistors to demonstrate the voltage level compatibility of both SONOS and
CMOS technologies. Many researchers believe that the neural system is made up of several layers’




of neurons and Fig. 6 shows the multi-layer architecture of an artificial neural network. The first
layer of neurons, the input layer, can be best thought as the sensory neurons in a human body. The
weight connections between the input layer and the middle hidden layer are normally considered to
be feedforward and fixed. On the other hand, the weight connections between the middle hidden
layer and the output layer are considered to be feedback in nature. Our work has concentrated on

the implementation of two neurons in the hidden layer and one output neuron as highlighted in the

figure.

Fig. 7 shows the block diagram of the single-level linear adaptive neuron. A desired response
(or external teacher), d(m), is presented to the neuron as the training signal. If the output of the
linear adaptive neuron is not trained, then there exists a mismatch between the output of the linear

adaptive neuron, y(m), and the desired response, d(m),
€(m) = d(m) - y(m) (6)

where e(m) is the error generated. This error is then used by a learning algorithm, namely the
Clipped-data Least Mean Square Error algorithm, to minimize the error generated and thereby
training the neuron to the correct response. This single-level linear adaptive neuron has twa tap
weights, each weight composed of two SONOS analog electrically reprogrammable conductances as
shown in Fig. 8. Since the synaptic weight may be either positive or negative in value, we have
chosen a differential weighting scheme. If the analog conductance connecting the positive summing
path to the differential operational amplifier is greater than the analog conductance connecting the
negative summing path to the differential operational amplifier, then the weight is positive in value.
On the other hand, if the opposite case is true, then the weight is negative in value. A positive
weight value corresponds to an excitatory synaptic strength and a negative weight value corresponds

to an inhibitory synaptic strength.

In operation, the input signal x(¢) is passed through a switched capacitor analog delay line
where the input signal is sampled and delayed to create four tapped signal outputs xy(m), x,(m), x,(m),
and xy(m). These tapped signals multiply to their corresponding programmable weights Wy, W, W,,
and W,, and the result is summed linearly at the summing amplifier. The output y(m) can be

expressed as




3
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where m is the time index and k is the spatial index. A correlated double sampling technique?? is
employed in the circuit to remove the unwanted noise and offset voltages irtroduced by the
operational amplifiers and switching circuits. The linear adaptive neuron is configured to perform a

Widrow-Hoff's delta rule as

W (m+1) = W, (m) + A W, (m) (8)

where A W(m) is the incremental weight to be calculated by the clipped-data least mean square error
(C-LMSE) algorithm?3:

AW, (m) = 241|e(m)] -Sgnle(m)] Sgn{x(m—k)] ®

where |t is the convergence factor. Compared to the regular Least Mean Square Error algorithm, the
input signal amplitude is clipped in the learning algorithm. This algorithm eliminates the usage of a
four quadrant multiplier needed for the LMS error algorithm. The sign multiplication in the
incremental weight calculation is essentially an Exclusive OR operation and the output of the
Exclusive OR gate controls the path of proper gate programming voltage for the SONOS synaptic
weight. If the convergence factor is small, then the system will minimize the misadjustment caused
by the variance of the weights; however, this also results in a long convergence time. Conversely, if
we choose to use a larger convergence factor, then the convergence time of the system is shortened
with the penalty of larger misadjustment. The backpropagating error is used to calculate the
adjustments to minimize the system error as shown in equation (9). Once the error is minimized,
the system is said to be in its steady state condition?* where the output of the system, y(m), is the

best match of the training signal, d(m), or the ’external teacher’.

The incremental weight update is essentially a cross correlation between the error and the
clipped input data vectors. The ﬁpdate stops when the two vectors become orthogonal. Sometimes,
~ the network may be overcorrected initially, however, the error will be quickly minimized by-the
learning algorithm and the system reaches its desired response. The digital delay line provides the
sign information of the input to the learning algorithm. A special steering network is designed to
switch the proper programming voltages to the gate terminals of the SONOS transistors once the




incremental weights are calculated.

4. Experimental Results

There are two main types of characteristics from which the electrical performance of the linear
adaptive neuron can be evaluated. The first characteristic, namely the output and training signals
versus time characteristics, gives the information on how well the output signal approximates the
training signal especially in the phase relationship between these two signals. The second
characteristic, namely the error signal versus time characteristics, shows how fast the linear
adaptive neuron adapts before it reaches its minimum error. A typical output and training signals
versus time characteristic consists of two parts: the initialized and the adapted part. In the
initialized part, the weights are first initialized to a known state (either the fully positive or the fully
negative state) and then the weights are subjected to a reading voltage to read out the weight
information and the output signal and the training signal are compared and recorded. The linear
adaptive neuron is then allowed to adapt itself to the training signal and the results are shown in
the adapted part of the characteristics. Figure 9 shows the output and training signal versus time

characteristic.

A typical error signal versus time characteristic is obtained with initialized weight values and
monitoring the error signal with time. Our observation indicates the weight initialization scheme
affects the convergence behavior of the linear adaptive neuron. This phenomenon is attributed to
the nonsymmetric erase and write characteristics of the SONOS transistor. Therefore, one weight
initialization scheme may require more erase action taking place than another weight initialization
scheme, causing a difference in convergence characteristics. Figures 10 shows a typical error versus

time characteristic.

5. Technical Achievements

During the period of investigation, several technical achievements have been accomplished.
Since the programming characteristics of the SONOS synaptic weight elements strongly govern the
performance of the integrated solid-stave linear adaptive neuron, the optimization of the SONOS
synaptic weight element becomes one of the key issues of this research effort. We have started our
research with a SONOS device structure of 20A of tunneling oxide, 96A of nitride, and 25A of
blocking oxide. The cross-over time for this structure is 1 second. After examining the programming

behavior of the SONOS structure mentioned above, we have decided to scale down the nitride




thick.ness and increase the blocking oxide thickness. This scaling scheme is based on the analysis
which promises higher programming field across the multi-layer dielectrics and better charge
retention in the nitride due to the elimination of the carrier injection from the gate terminal as well
as the carrier tunneling to the gate terminal. The scaling effort has produced a new device structure
with the programming speed improvement of one order of magnitude compared to the previous
version. We have then incorporated these new SONOS synaptic weight elements in the linear
adaptive neuron and observed a corresponding one order of magnitude improvement in convergence
speed. Therefore, the direct relationship between the programming characteristics of the SONOS

synaptic weight elements and the performance of the linear adaptive neuron has been proven

experimentally.

Encouraged by the sucess in scaling down the device dielectric structure, we have extended our
research effort in fabricating two new sets of devices. One set of devices have the dielectric
thicknesses similar to Nozaki et. al.2® with 18A tunneling oxide, 49A nitride and 40A of blocking
oxide. The other set of the devices have an ultra-thin tunneling oxide of 11A , 49A of nitride and
40A of blocking oxide. For the first time, the ultra-thin tunneling oxide SONOS devices have been
successfully tested and reported. The programming characteristics of the ultra-thin tunneling oxide
indicate a much better improvement over those published in the literature and the result is shown in
figure 10. In addition, a novel device structure is currently under investigation, namely the buried
channel SONOS device structure. This structure has demonstrated better programming speed as
well as improved retention time compared to the conventional surface channel SONOS device with

similar dielectric dimensions. A typical buried channel SONOS device programming characteristic

is shown in figure 11.

Furthermore, a theoretical analysis of the convergence behavior with a variable convergence
factor has been developed. The variable convergence factor scheme is a direct result of using the
SONOS memory transistors as the reprogrammable synaptic weight elements. The convergence
factor initially starts with a large value, which accelerates the convergence process. As time
progress, the convergence factor reduces its value and aids the linear adaptive neuron converging to
_ its optimum steady state condition. The analysis is composed of two separate models:
ERASE/WRITE tunneling model and Fowler-Nordheim tunneling model. A computer software has
been written to simulate the convergence behavior of the linear adaptive neuron with the

incorporation of variable convergence factor. Since the device model is physically based, the input




variables of the simulation software are actual physical device parameters of the SONOS synaptic

weight elements.

A fully computer controlled data acquisition system is an invaluable tool for SONOS synaptic
weight element characterization. Previously, the measurement system required the operator to
manually set up the measurement sequence and hand-recorded the data obtained. An automated
data acquisition system enables the user to set up measurements, analyze the data, and extract
device parameters, all under the control of one console. The automated data acquisition system has
been designed, constructed and fully tested. A block diagram of the system is depicted in figure 12
and the schematic of the HPIB command/data interpreter is shown in figure 13. The system is
composed of an HP 9836 technical computer served as the controller, a HPIB (HP Interf:. e Bus)
command/data interpreter which interfaces with the computer and sets up the erase/write/read
circuit and the pattern generator, a digital storage oscilloscope responsible for capturing the
measured result and transmitting the data back to the computer for analysis. In addition, the wafer
can be placed in an automatic wafer prober with temperature controller to perform wafer leve!
temperature testing. A software control routine has been written to coordinate the instruments in

the system. The source code for control routine can be provided upon request.

Integration of the linear adaptive neuron onto a single silicon wafer is one of the mail goals of
our research efforts. We have acquired a computer aided design software package, developed by the
Mentor Graphics Corporation, and implemented on our SUN Sparc Workstations. The first task of
using this software is to develop a technology file geared to the fabrication sequence of the
Microelectronic Research Laboratory at Lehigh. In addition, the technology file must accommodate
both the conventional CMOS process and the Nonvolatile Semiconductor Memory (NVSM)
technology for the SONOS synaptic weight element implementation. Nox;el processing steps such as
buried channel implants, semiconductor implanted resistor are also incorporated into the technology
file. Since we are creating analog ASICs, area and power consumption must be minimized. We have
adopted a hierarchical design approach from basic functional cell design up to the entire integrated
solid-state linear adaptive neuron design to ensure the minimization of power and area consumption.

The design of the entire integrated adaptive neuron has been completed and the process of making

the masks containing the design is currently undergoing.

The integrated adaptive neuron is composed of five main cells, namely, the clock module, the
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analog delay line module, the steering network module, the summing module and the algorithm
module. The clock module generates all the controlling signals and thus syachronizes all the
operations of the linear adaptive neuron to a master clock. The analog delay line module utilizes
switched capacitor scheme to delay the input signal. The steering network module is responsible to
direct proper programining voltages to the SONOS synaptic weight elements during adaptation.
The summing module sums up the weighted input signals and removes the unwanted noise from the
system. The algorithm module uses the information from the summing module to produce
programming voltages for the steering network module according to the clipped data Least Mean
Square error algorithm. A complete layout design is shown in figure 14. A printed circuit board
version of the integrated solid-state linear adaptive neuron is also designed and implemented. The

schematic of the PCB version of the linear adaptive neuron can be furnished upon request.

We believe we have advanced the understanding of the how the SONOS synaptic weight
elements can be used in the implementation of the neural network. In addition, we have
demonstrated success in scaling of the SONOS nonvolatile memory transistors and thus provided a
guideline for future scaling of the SONOS devices. We have also contributed to the state of the art in
the implementation of the artificial neural networks with our design of integrated solid-state linear
adaptive neuron. Under the support of this project, numerous papers have been accepted and a list

of publications is attached in appendix B.

6. Conclusions
The SONOS nonvolatile memory transistor has been shown to be an ideal electronic element

for the electrically reprogrammable analog conductance in an artificial neural network. We have
demonstrated the attractive features of this synaptic weight for the use of large neural network
systems, for instance, low programming voltage (5-10V), low power dissipation(<luW / synapse),
small chip area (estimated 20pm?/ weight cell for a 1.2 pm feature size), a dynamic range of 60 dB,
good memory retention (20 % window at a projected 10 years period), and endurance beyond 107
erase/write cycles. In addition, the SONOS synaptic weight has inherent resistance to radiation
damage (AV,,=0.1V, with V, =+5V at 1MRad Co80 radiation). We have been continuing our efforts in
optimizing the modifiable synaptic weights to provide better electrical characteristics for neural

network applications.

We have also incorporated the SONOS synaptic weights into a single-level two tap linear

11




adaptive neuron employing a Widrow-Hoffs delta learning rule. The combination of CMOS control
circuits and SONOS synaptic weights has demonstrated the feasibility of integrating these two
technologies onto a single silicon wafer. The initial results are encouraging and promising and
provide insight and direction into the integration of these two technologies to realize large artificial

neural network systems.
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Figure 9. Output and Training Signals versus Time Characteristics of a
Two Tap Weight Linear Adaptive Neuron (a) Initialized (b) Adapted
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Appendix A
CMOS/NVSM Fabrication Sequence with Novel Buried Channel Devices

¢ Starting Material 3 in p-type 2-3 Ohm/cm

e N-Well Implant Formation

1. RCA Clean

2. Wet Oxidation for 1000 A , 950 °C, 25 min

3. Photoresist Application

4. Prebake, 98 °C, 30 min

5. Mask Level NW

6. Photoresist Development

7. Postbake, 120 °C, 30 min

8. BHF Etch, 10:1, 2 min

9. Implant, Phosphorus, 4.8 x1012, 100KeV
10. Plasma Photoresist Strip (Oxygen)
11. Photoresist Stripper
12. Dry Oxidation, 500 A , 1200 °C, 5 min
13. Implant Anneal, 1200 °C, 240 min

¢ Active Device

1. RCA Clean

2. LPCVD Nitride, 200mTorr, 10:1 ratio, 1000 A , 54 min
3. Photoresist Application

4. Prebake, 98 °C, 30 min

5. Mask Level AD

6. Photoresist Development

7. Postbake, 120 °C, 30 min

8. Plasma Etch Nitride (CF,)

9. Photoresist Stripper

¢ Channel Stop Implant

1. Photoresist Application
2. Prebake, 98 °C, 30 min
3. Mask Level FI

4. Photoresist Development
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5. Postbake, 120 °C, 30 min

6. Implant, BF,, 5x 101!, 145KeV

7. Plasma Photoresist Strip (Oxygen)
8. Photoresist Stripper

9. RCA Clean

10. Wet Field Oxidation, 6500 A , 1100 °C, 60 min
11. BHF Etch, 10:1, 1 min

12. Hot H3PO,, 170°C, 35 min

13. BHF Etch, 10:1, 1.5 min

14. RCA Clean

15. Wet Oxidation, 900 °C, 20 min

16. BHF Etch, 10:1, 1 min

17. RCA Clean

18. Wet Pad Oxidation, 900 °C, 15 min
19. Implant, Boron, 9x 1011, 70KeV
20. BHF Etch, 10:1, 2min

21. RCA Clean

22. Anneal, 950 °C, 30 min

¢ Buried Channel Formation

1. RCA Clean

2. Wet Pad Oxidation, 900 °C, 15 min
3. Photoresist Application

4. Prebake, 98 °C, 30 min

5. Mask Level BCN

6. Photoresist Development

7. Postbake, 120 °C, 30 min

8. Implant, Arsenic, 5x 1011, 75KeV
9. Plasma Photoresist Strip (Oxygen)
10. Photoresist Stripper

11. Photoresist Application

12. Prebake, 98 °C, 30 min

13. Mask Level BCP

14. Photoresist Development

15. Postbake, 120 °C, 30 min

16. Implant, Boron, 5x 1015, 32KeV
17. Plasma Photoresist Strip (Oxygen)
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18. Photoresist Stripper

19. Photoresist Application

20. Prebake, 98 °C, 30 min

21. Mask Level IR

22. Photoresist Development

23. Postbake, 120 °C, 30 min

24. Implant, Phorsphorus, 5x 101, 100KeV
25. Plasma Photoresist Strip (Oxygen)

26. Photoresist Stripper

27. BHF Etch 10:1, 2 min

o Gate Dielectric Formation

1. RCA Clean
2. Triple Wall Dry Oxidation, 800 A , 900 °C

3. Photoresist Application

4. Prebake, 98 °C, 30 min

5. Mask Level MW

6. Photoresist Development

7. Postbake, 120 °C, 30 min

8. BHF Etch, 10:1, 2 min

9. Photoresist Stripper

10. RCA Clean

11. Triple Wall Dry Oxidation, 720 °C, 20 A , 9 min
12. LPCVD Nitride, 250 mTorr, 735 °C, 120 A , 5 min, 10:1
13. Wet Blocking Oxidation, 1000 °C, 40 A , 50 min

¢ Gate Material

. LPCVD Polysilicon, 800 mTorr, 180 sccm SiH, 625 °C, 5000 A, 30 min
. RCA Clean

. POCl; Doping, 900 °C, 25 min Pre-deposition, 30 min Drive-in

. BHF Etch, 10:1, 15 sec.

. Photoresist Application

. Prebake, 98 °C, 30 min

. Mask Level PY

. Photoresist Development

. Postbake, 120 °C, 30 min

W W -3 O U B W N -
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10. Plasma Polysilicon/Gate Dielectric Etch (SFy)
11. BHF Etch, 100:1, 1 min

12. Hot Hy,PO, Etch, 170 °C, 3.5 min

13. BHF Etch, 100:1, 1 min

14. Photoresist Stripper

e Source/Drain Formation

. RCA Clean

. Dry Pad Oxidation, 900 °C, 200-300 A , 15 min

. Photoresist Application

. Prebake, 98 °C, 30 min

. Mask Level N+

. Photoresist Development

. Postbake, 120 °C, 30 min

. Source/Drain Implant, Phorsphorus, 2x 1015, 100KeV
. Plasma Photoresist Strip (Oxygen)

W 00 -3 O UM v W N =

-t
o

. Photoresist Stripper

[Wy
—

. Photoresist Application

. Prebake, 98 °C, 30 min

. Mask Level P+

. Photoresist Development

. Postbake, 120 °C, 30 min

. Source/Drain Implant, Boron, 5x 1015, 30KeV
. Plasma Photoresist Strip (Oxygen)

Pt b e e e e e
00 =3 O O B W N

. Photoresist Stripper

. RCA Clean without HF Dip

29. Anneal and Drive-in, 950 °C, 60 min
21. BHF Etch, 10:1, 1 min

[
©

o Contact Window Formation

1. RCA Clean

2. Wet Oxidation, 900 °C, 1000 & , 30 min
3. Photoresist Application

4. Prebake, 98 °C, 30 min

5. Mask Level CW

6. Photoresist Development
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7. Postbake, 120 °C, 30 min
8. BHF Etch, 10:1, 3-5 min
9. Photoresist Stripper
10. Dilute HF Etch (HF Dip), 30 sec

o Metallization

1. RF Sputtering Aluminum, 110 mTorr, 60 min
2. Photoresist Application
3. Prebake, 98 °C, 30 min
4. Mask Level MET

5. Photoresist Development
6. Postbake, 120 °C, 30 min

7. PAN Etch, 45 °C, 2 min

8. Photoresist Stripper

9. Backside Clean-up

10. Backside RF Sputtering Aluminum, 110 mTorr, 60 min
11. Preliminary Check ensuring contact window open

12. Organic Clean

13. PMA, 450 °C, 30 min
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¢ Yin Hu, William Wagner, and Marvin H. White, "Characterization of a Novel Buried
Channel EEPROM NVSM", Proceedings of the 12th IEEE Nonvolatile Semiconductor
Memory (NVSM) Workshop, Monterey, August 1992.

e Margaret L. French, Chun-Yu Chen and Marvin H. White, “New Results on Scaled
SONOS Nonvolatile Memory Devices®, Proceedings of the 12th IEEE Nonvolatile
Semiconductor Memory (NVSM) Workshop, Monterey, August 1992.

e Chun-Yu Malcolm Chen, Marvin H. White and Margaret French, “A Solid-State
Electronic Linear Adaptive Neuron with Electrically Alterable Synapses”, Proceedings
of the 1991 International Joint Conference on Neural Networks, Singapore, November
1991.

¢ Chun-Yu Malcolm Chen, Marvin H. White and Margaret French, “A Solid-State
Electronic Linear Adaptive Neuron with Electrically Reprogrammable Synapses”,
Proceedings of the Electro/91 International Electronics Conference and Exposition, New
York, April 1991.

e Chun-Yu Malcolm Chen, Margaret French and Marvin H. White, “An Analog
Nonvolatile Electrically Modifiable Synaptic Element for VLSI Neural Network
Implementation”, Proceedings of the 1991 IEEE Nonvolatile Semiconductor Memory

Workshop, Monterey, February 1991.

o Chun-Yu Malcolm Chen, Marvin H. White and Margaret French, “A Single-level Two
Tap Weight Linear Adaptive Neuron with Electrically Modifiable Synapses”,
Proceedings of the 1990 Long Island IEEE Student Conference on Neural Networks, Long
Island, April 1990.
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EMERGING COMPUTING TECHNOLOGIES

DARPA Funds Academics, Agencies, National Laboratories

Academics funded by the Defense
Advanced Research Projecss Agency
(DARPA) gave reviews of their work
at the project update mesring last
year, along with mdusn-y
contraczees, government laborato-
res and agendies such as the
National Aeronautics and Space
Adxmmstnnon s (NASA's) Jet

techrciogies, as well as theorezical funding the futuristic quest for an
advancss. analog =e=ory unit.

Ore of the most aggressive «Sors Researcer Marvin White at
funded 5y DARPA s the mocifiabie  Lehigh University (Bethiehewn,
synapse Digital memordes are iil- Penn.) is attzmpting o create an
suited ‘or storing the analog electronic version of the synapse
memory eiement used by newrai with a multi-Gieleczric called the Sonas
networks which is why DARPA is Continued on page 4

Neural Networks Call Bets at Horse-Race Track

L trew (TDTY o A,

mable syrarses using chips with a

DARPA Funds Academics, Agendies, National Labs e SYTaTSes sl a
Qpadtor == herme and 11t

Continued from page !

memory transistor. Sonos is an
dec:nmﬂvmmgmmmzcle aonvoia-
tile mezhod of adaptvely changing the
conducance of an analog svnapse.
Compared with e!ect:imﬂy-e.mbie
programmable read-only memcries
(EEPROMs), it offers 2 low program-
ming voitage (S voits). Sonos also has
low power dissipation, wide dynamic
range and strong radiadon hardness.
Sonos can mimic biologial synapses
with reinforcement !exming ard has
stable long-term memory rerension.

At the Massachuserss Insntute of
Technology (MIT) investigator Alic
Chiang is using charge-coupied devices
(CCDs) as the analog memory €enent.
MIT is deveioping a high-speed. Jow-
powez, generai-purpose jearure-
extractor and dassifier uing nevmai
u.-dmology MIT's targe appiictens
are image- and speech-recognition.
Chiang favors CCDs which an stcre
analog levels of informadon in
dirculating “ucker brigaces” with
better than 99.999% charge Tansier
effidency and greater than 45db
dynamic sange.

MIT selected 2 generic two-laver
neural network dassifier based on
vector-matrix products for impiezent-
tion. It cn also be used for 1.D
correlations and 2D marched Sl
Two versions of a micechip neural
processor have been dmgm::

dom 107

* 614 maneczon cassifier wits 192
inpus and 32 ouguts

The & vesion peorss 2-D
filteming of grav-level images with: 20
programradie S-by-7-by-8 bit spacai
Sitess whick an extacs features Som
an input image in realsime The 29
scuares mifmeter chip arez consiss cf

an araiog et buffe, 49 multipiving
D/A conver==s and 20 7-by-7by-3 bit
locl memczies. The 10MHz device
nns at one ilion arithmetic-opers-
dons per secend at less than 1 waz

Ammdassqtmemﬂlimmr‘-_ip
consists of zraiog input buffer, 144
Multipiing = Digital Anaiog Converess
and 14 6-bit !44-clement memores.
The 10MHz= cevice nuns a 2.8 billion
acthmetic cpeations per second and
censumes 2 warts. Furure vessions wil
be saled 1 wxing similar chips i a
panlle pipeined configuraton. When
mounted on Joards, the chips an a2
as high-spesc zeural co-processors o
cenventionai Sgital processors.

NASA's jez >opuision Laboratory
(Pasaciemta, Ca3f) is investigadng
Qpadtors as e analog memary
eement in ~e:al networis. Resercier
Anil Thakocs at JPL reporred on a
Jroject io evannte the feashility of
uxng 1naicg ~ardware fo impiezent
teural netwesk learrung methocs,
Ther areas of Saterest cover speec.
Pattern- and arger-recggnition. sonar.
mmmdpm -

T s e mmeneiere o 3 TR
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esolutior. A zzuron chip perfomms <te
sigmoid z=d grovides varable gain. The
nerwork ses 36 neurons fabricired
with CMCS com VLSI micochips
cmnnectes @n a feedhack configuration.
Sexting feectack 10 zevv, for feed-
forward caiy, vields a network with
eight inpuss, &ght outputs and 22
b.ddmmmmmstnddmhv:s.

on the inverse kinematics transforma-
tons in robotics and for recognition of
In Lincoin Labs adiacent o MIT,
searcher Couresi Mehanian is
designing an cotical neural ecinoiegy
using 2 manoiithic opto-eleconic
Sansistor (MCET). A newron consists of
a multipiequantum weill (MQW) light
devector on the inpurs, a nonlinear
resonant-unreiing diode and another
MQW funcrioning as the output
wodularar. This opticai newron sums
itS inpuss, peorns 3 sigmoical
Tansformaton and modulates the
output opticl bearm. The inomsity of
the bearn rezresents neural acgivity.
micTochip arrays of sensing MOETs
which cn be fashioned into the lavers
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NEWS

U's geming more and more

difficult © ignore aeural
nerworks. Just ask the
Defense Departmerz. whose
Projeas Agency is zomg ©
spend $33 million through
1992 © see if the networks

'| aan help soive signal-pro-

aessing problems.

The lure of neumi ness.
which more or less amack
problems the wayv the
human Srain does. is har
they do not need compieze
dam to solve complex prob-
lems—like a human. thev
use context and a xind of
mnmuiton. And that. pius ous-
gve parallelism .nd xeajame

HARDER TIMES IN
MASSACHUSETTS

The widening Massachu-
setts malaise has finally
infected Digil Equipment
Corp., the Maynard. Mass,,
computer giant that had
never had involuntary livoffs
in its 33-vear exdistence. And
amlvsts believe the 'voff of
3,500 that Digital announced
last month may aot be
enough © stern 2 shump in
earmings.

Digital wants to mm its
head count by 6.000 by the
end of its fiscal vear. june 30.
A voluntary retirement pro-
gram fell some 3,500 short

Digrl stll emplovs more
than 120.000 worldwide and
1s the second largest empiov-
er in Massachusens. behind
Ravtheon Co. But Digici's
downaizang will further cut
emplovment in the Bav Sate.
which has lost some 200.000
jobs 1 the last vear, most of
them i the once-soanng
computer and eleczoncs
beit along the Boston ireas
stoned Route 129. @

FRONT
DARPA LOOKING HARD AT NEURAL NETS..

‘PA's

"NEURAL =
HO'S 1 WH

pe-fcrmarce, acds up to
mere acoracy o qussiles
and ‘ncreased maneuvenabil-
ay for anks, ships. and air-
quaii Whars more. there s
evicence that peural nets
are easier » program than
comventional ones.

New, Dama 5 funding a2
one-vear efort at N compa-
nies. Bboraxoes. and univer-
sves. They are woriing on
newral simutanion. heory, and
moceling, with more than
haif 5w effert devored © sim-
ylating automatc target
recognition and speech
reccgniion, and sorar and
sessric sigral identification.

..AND HERE'S NEURAL COMPUTER THAT DOES 2.3 BILLION OPERATIONS/S

Even is fie Penugon's
Defense Acvanced Research
Projecss Agency seeds the
neural netvork pastures, cor-
porate researchers keep
working an acural comput-
ers—machines. modeled on
the human bram that an
handle tsks requiring innuir-
ion—though anything like
ccmmercal mpiementaton

is years Jwav. Now Hiadhi omsm= ==
Lid. savs it has come up with B

one whose leaming process-
ing unit tar =n handle 23
biilion opempens's. 10 umes
wiar n de obmined by
smuizang 1 newral computer
on :n Himcy 3320 super-
computer.

The Hitachi lab mode!
includes 1152 neurons and
s ut 12 n high 33 n
wide, and @ . deep. The
company has Jdeveioped
stock-pnce predicaon and
signanure-venficznon  1ppii-
anons dhar =n de¢ mun on 2
workstoen fur s linked 0
the neurai sywem. A stock-
pnee preciceen akes 10 s
vy 1 Hinos spokesman

and 3 sgrarure verificaton
takes 2 s

The muchine goes a long
way toward overcoming
faulrs of existing hardware-
based geural computers:
they either have wo few neu-
rons, or they leamn wo slow-
ly. A pracical systemn needs

ar lexst 1,000 interconneced
newrons. sav researchers at
Himeni,

The new computer is
based on an LSI circuit
announced in 1989 by
Hitachi that houses 576 neu-
rons. Eight of them are used
in the new compurer.
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From Brown and White, April 28, 1992

fuesday, April 28, 1992

NEURAL NETS

From Page 11
anificial neural network structures.

The researchers at Sherman Fairchild
Lab are developing 2 new type of solid-
state electronic neuron with unds from
the Defense Advanced Research Projects
Agency (DARPA).

Lehigh, Massachusetts Institute of
Technology and Hebrew University are
the only schools that the DARPA
Antificial Imelligence Neural Networks

Technology Program suppons finan-

LU scientists seek to speed up
innovative neural net processe

- By JANINE CONNOR
Science Wrter

The lifestyle of the Jetsons is pot that
far from reality. Innovations familiar to
our favorite future family, sach as
computers that can recognize handwrit-
ing, verify signatures, translate speech
and drive cars already exist thanks to
artificial pearal networks.

Neural nétworking is a new informa-
tion processing technique that is being
:esearghed to a great extent at Lehigh It
borrows its basic p-inciples from
biology, but is itself at the cutting edge
of computer research.

Among those involved in this
exciting field are Sherman-Fairchild
professor of Computer Science and

Elecmical Engineering Marvin White
gradnate students Chun- Yu Malcolm
Ches and Margaret French.

Chen, White and French are work-
to develop a device that has the abilit
“leam™ similar to the way people do.

But 10 do this means imitating the
brain's 10-billion-oeuron petwork. ar
the extensive neural oetwork of 200,
perves throughout the body.

“Individual neurons from our bodi
are relarively slow compared to comg

. ers, but therr network architecture m:

their grocessing fast,” Chen said. The
Lehigh researchers are trying to deve
new structures to increase the speed .

See NEURAL NETS Page 13

Neural net processing Is
maodeled after bloiogical
networks of neural cells, wh
form the basis of the leamir
processes by transmitting
signals to and from the bralr

SciencePages

cially in this specific arca of technology.
Fellowship support from the NSF
Engincering Research Center for

Advanced Techuology for Large
Structural Systems (ATLSS) is also
contributing to the rescarch.

“This research will be an ongoing
project for many years,” White said.
“Right now we are in the embryonic
stages.”

“This is a faisly new field with alot
of new researchers,” said Chea, who
received his undergraduate and masters
electrical engineering degrees from

36

Lehigh and is now working on neural
networks toward his Ph.D.

“We hope what we do will contribute
to stare of the ant research regarding
neural network technology,” he said.

The antificial neural networks
researchers are designing are contained
in an electronic chip.

By applying different voltages, the
scientists can train an electrical circuit to
produce the correct output for changing
input. In other words, the circuit
“learns™ how to respond based on its
prior experiences.

13

The anificial ncurul networks
developed at Sherman Fairchild Lab
improve upon previous work by neyuir-
ing a tow programming voltage ol
volts and cuiting down on toss of
current. The system 's smail size and
real-rime application possibilities also
make it attractive.

Chen said, 1 am delighted 10 have
the opportunity to work on this project
because [ think it has the potennal 10
make a significant impact in the com-
puter industry amd signal processing
field.”
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